(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
ackin(s(X), s(Y)) → u21(ackin(s(X), Y), X)
u21(ackout(X), Y) → u22(ackin(Y, X))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
ackin(s(X), s(Y)) → u21(ackin(s(X), Y), X)
u21(ackout(X), Y) → u22(ackin(Y, X))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
ackin(s(X), s(Y)) → u21(ackin(s(X), Y), X)
u21(ackout(X), Y) → u22(ackin(Y, X))
Types:
ackin :: s → s → ackout:u22
s :: s → s
u21 :: ackout:u22 → s → ackout:u22
ackout :: s → ackout:u22
u22 :: ackout:u22 → ackout:u22
hole_ackout:u221_0 :: ackout:u22
hole_s2_0 :: s
gen_ackout:u223_0 :: Nat → ackout:u22
gen_s4_0 :: Nat → s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
ackin,
u21They will be analysed ascendingly in the following order:
ackin = u21
(6) Obligation:
Innermost TRS:
Rules:
ackin(
s(
X),
s(
Y)) →
u21(
ackin(
s(
X),
Y),
X)
u21(
ackout(
X),
Y) →
u22(
ackin(
Y,
X))
Types:
ackin :: s → s → ackout:u22
s :: s → s
u21 :: ackout:u22 → s → ackout:u22
ackout :: s → ackout:u22
u22 :: ackout:u22 → ackout:u22
hole_ackout:u221_0 :: ackout:u22
hole_s2_0 :: s
gen_ackout:u223_0 :: Nat → ackout:u22
gen_s4_0 :: Nat → s
Generator Equations:
gen_ackout:u223_0(0) ⇔ ackout(hole_s2_0)
gen_ackout:u223_0(+(x, 1)) ⇔ u22(gen_ackout:u223_0(x))
gen_s4_0(0) ⇔ hole_s2_0
gen_s4_0(+(x, 1)) ⇔ s(gen_s4_0(x))
The following defined symbols remain to be analysed:
u21, ackin
They will be analysed ascendingly in the following order:
ackin = u21
(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol u21.
(8) Obligation:
Innermost TRS:
Rules:
ackin(
s(
X),
s(
Y)) →
u21(
ackin(
s(
X),
Y),
X)
u21(
ackout(
X),
Y) →
u22(
ackin(
Y,
X))
Types:
ackin :: s → s → ackout:u22
s :: s → s
u21 :: ackout:u22 → s → ackout:u22
ackout :: s → ackout:u22
u22 :: ackout:u22 → ackout:u22
hole_ackout:u221_0 :: ackout:u22
hole_s2_0 :: s
gen_ackout:u223_0 :: Nat → ackout:u22
gen_s4_0 :: Nat → s
Generator Equations:
gen_ackout:u223_0(0) ⇔ ackout(hole_s2_0)
gen_ackout:u223_0(+(x, 1)) ⇔ u22(gen_ackout:u223_0(x))
gen_s4_0(0) ⇔ hole_s2_0
gen_s4_0(+(x, 1)) ⇔ s(gen_s4_0(x))
The following defined symbols remain to be analysed:
ackin
They will be analysed ascendingly in the following order:
ackin = u21
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ackin(
gen_s4_0(
1),
gen_s4_0(
+(
1,
n116_0))) →
*5_0, rt ∈ Ω(n116
0)
Induction Base:
ackin(gen_s4_0(1), gen_s4_0(+(1, 0)))
Induction Step:
ackin(gen_s4_0(1), gen_s4_0(+(1, +(n116_0, 1)))) →RΩ(1)
u21(ackin(s(gen_s4_0(0)), gen_s4_0(+(1, n116_0))), gen_s4_0(0)) →IH
u21(*5_0, gen_s4_0(0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
ackin(
s(
X),
s(
Y)) →
u21(
ackin(
s(
X),
Y),
X)
u21(
ackout(
X),
Y) →
u22(
ackin(
Y,
X))
Types:
ackin :: s → s → ackout:u22
s :: s → s
u21 :: ackout:u22 → s → ackout:u22
ackout :: s → ackout:u22
u22 :: ackout:u22 → ackout:u22
hole_ackout:u221_0 :: ackout:u22
hole_s2_0 :: s
gen_ackout:u223_0 :: Nat → ackout:u22
gen_s4_0 :: Nat → s
Lemmas:
ackin(gen_s4_0(1), gen_s4_0(+(1, n116_0))) → *5_0, rt ∈ Ω(n1160)
Generator Equations:
gen_ackout:u223_0(0) ⇔ ackout(hole_s2_0)
gen_ackout:u223_0(+(x, 1)) ⇔ u22(gen_ackout:u223_0(x))
gen_s4_0(0) ⇔ hole_s2_0
gen_s4_0(+(x, 1)) ⇔ s(gen_s4_0(x))
The following defined symbols remain to be analysed:
u21
They will be analysed ascendingly in the following order:
ackin = u21
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol u21.
(13) Obligation:
Innermost TRS:
Rules:
ackin(
s(
X),
s(
Y)) →
u21(
ackin(
s(
X),
Y),
X)
u21(
ackout(
X),
Y) →
u22(
ackin(
Y,
X))
Types:
ackin :: s → s → ackout:u22
s :: s → s
u21 :: ackout:u22 → s → ackout:u22
ackout :: s → ackout:u22
u22 :: ackout:u22 → ackout:u22
hole_ackout:u221_0 :: ackout:u22
hole_s2_0 :: s
gen_ackout:u223_0 :: Nat → ackout:u22
gen_s4_0 :: Nat → s
Lemmas:
ackin(gen_s4_0(1), gen_s4_0(+(1, n116_0))) → *5_0, rt ∈ Ω(n1160)
Generator Equations:
gen_ackout:u223_0(0) ⇔ ackout(hole_s2_0)
gen_ackout:u223_0(+(x, 1)) ⇔ u22(gen_ackout:u223_0(x))
gen_s4_0(0) ⇔ hole_s2_0
gen_s4_0(+(x, 1)) ⇔ s(gen_s4_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ackin(gen_s4_0(1), gen_s4_0(+(1, n116_0))) → *5_0, rt ∈ Ω(n1160)
(15) BOUNDS(n^1, INF)
(16) Obligation:
Innermost TRS:
Rules:
ackin(
s(
X),
s(
Y)) →
u21(
ackin(
s(
X),
Y),
X)
u21(
ackout(
X),
Y) →
u22(
ackin(
Y,
X))
Types:
ackin :: s → s → ackout:u22
s :: s → s
u21 :: ackout:u22 → s → ackout:u22
ackout :: s → ackout:u22
u22 :: ackout:u22 → ackout:u22
hole_ackout:u221_0 :: ackout:u22
hole_s2_0 :: s
gen_ackout:u223_0 :: Nat → ackout:u22
gen_s4_0 :: Nat → s
Lemmas:
ackin(gen_s4_0(1), gen_s4_0(+(1, n116_0))) → *5_0, rt ∈ Ω(n1160)
Generator Equations:
gen_ackout:u223_0(0) ⇔ ackout(hole_s2_0)
gen_ackout:u223_0(+(x, 1)) ⇔ u22(gen_ackout:u223_0(x))
gen_s4_0(0) ⇔ hole_s2_0
gen_s4_0(+(x, 1)) ⇔ s(gen_s4_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ackin(gen_s4_0(1), gen_s4_0(+(1, n116_0))) → *5_0, rt ∈ Ω(n1160)
(18) BOUNDS(n^1, INF)